Integration of microRNAome, proteomics and metabolomics to analyze arsenic-induced malignant cell transformation
نویسندگان
چکیده
Long-term exposure to arsenic has been linked to tumorigenesis in different organs and tissues, such as skin; however, the detailed mechanism remains unclear. In this present study, we integrated "omics" including microRNAome, proteomics and metabolomics to investigate the potential molecular mechanisms. Compared with non-malignant human keratinocytes (HaCaT), twenty-six miRNAs were significantly altered in arsenic-induced transformed cells. Among these miRNAs, the differential expression of six miRNAs was confirmed using Q-RT-PCR, representing potential oxidative stress genes. Two-dimensional gel electrophoresis (2D-PAGE) and mass spectrometry (MS) were performed to identify the differential expression of proteins in arsenic-induced transformed cells, and twelve proteins were significantly changed. Several proteins were associated with oxidative stress and carcinogenesis including heat shock protein beta-1 (HSPB1), peroxiredoxin-2 (PRDX2). Using ultra-performance liquid chromatography and Q-TOF mass spectrometry (UPLC/Q-TOF MS), 68 metabolites including glutathione, fumaric acid, citric acid, phenylalanine, and tyrosine, related to redox metabolism, glutathione metabolism, citrate cycle, met cycle, phenylalanine and tyrosine metabolism were identified and quantified. Taken together, these results indicated that arsenic-induced transformed cells exhibit alterations in miRNA, protein and metabolite profiles providing novel insights into arsenic-induced cell malignant transformation and identifying early potential biomarkers for cutaneous squamous cell carcinoma induced by arsenic.
منابع مشابه
Integrated proteomics and metabolomics analysis of rat testis: Mechanism of arsenic-induced male reproductive toxicity
Arsenic is a widespread metalloid in environment, whose exposure has been associated with a broad spectrum of toxic effects. However, a global view of arsenic-induced male reproductive toxicity is still lack, and the underlying mechanisms remain largely unclear. Our results revealed that arsenic exposure decreased testosterone level and reduced sperm quality in rats. By conducting an integrated...
متن کاملSerum-based metabolic alterations in patients with papillary thyroid carcinoma unveiled by non-targeted 1H-NMR metabolomics approach
Objective(s): As the most prevalent endocrine system malignancy, papillary thyroid carcinoma had a very fast rising incidence in recent years for unknown reasons besides the fact that the current methods in thyroid cancer diagnosis still hold some limitations. Therefore, the aim of this study was to improve the potential molecular markers for diagnosis of benign and malignant thyroid nodules to...
متن کاملMetabolomics Analysis of Mesenchymal Stem Cells
Various mesenchymal stem cells as easily accessible and multipotent cells can share different essential signaling pathways related to their stemness ability. Understanding the mechanism of stemness ability can be useful for controlling the stem cells for regenerative medicine targets. In this context, OMICs studies can analyze the mechanism of different stem cells properties or stemness ability...
متن کاملSecondary Malignant Transformation of Giant Cell Tumor of Bone: Is It a Fate?
The malignant transformation of conventional giant cell tumor of bone (GCTOB) is rare and usually occurs with irradiation. Here we report two neglected cases of conventional GCTOB with spontaneous malignant transformation at 11 and 16 years after initial diagnosis. In the former case, the patient refused to receive any treatment following the incisional biopsy, and in the latter, the firs...
متن کاملOncogenic transformation of human lung bronchial epithelial cells induced by arsenic involves ROS-dependent activation of STAT3-miR-21-PDCD4 mechanism
Arsenic is a well-documented human carcinogen. The present study explored the role of the onco-miR, miR-21 and its target protein, programmed cell death 4 (PDCD4) in arsenic induced malignant cell transformation and tumorigenesis. Our results showed that treatment of human bronchial epithelial (BEAS-2B) cells with arsenic induces ROS through p47phox, one of the NOX subunits that is the key sour...
متن کامل